高铁用的是电还是油
高铁用的是电,不是油。主要是电能不仅完全能保证高铁的高速运行,还环保节能,稳定性也很强。
高铁用的什么电
用的是交流电。
一、高铁的供电模式:国内电气化铁路供电制式为工频单相交流式,牵引网额定电压为27.5kv,与动车组额定电压相符。为保证向动车组提供合格的电压,同时减少电气化铁路对邻近通信线路的干扰影响,高速铁路牵引网一般采用带负馈线的直接供电方式和AT供电方式。国内的既有线包括既有线改造后提速至200km/h的线路大量采用的均是带负馈线的直接供电方式,新建的250km/h及其以上的高速铁路普遍采用AT供电方式,供电臂长度一般为30--40km,设2--3个AT区段。
二、高铁变电系统:通过变压器将地方110kv或220kv三相高压电变为1个或2个单相27.5kv工频变流电,并向铁路上下行 牵引网供电,主要有牵引变压器、牵引变电所、AT所、分区所、开闭所等设备支撑。
三、变频系统:动车组通过受电弓接受来自接触网的27.5kv高压交流电,输送给牵引变压器降压,降压后的交流电再输入牵引变流器,从而完成单相交流--直流--三相交流的变化(也就是俗说的交直交变化),以保证动车组的运行。动车组一般有2-3个相对独立的牵引传动系统,正常情况下同时工作;当一个牵引系统故障时可以自动切断,列车可以继续降功率运行。
四、电力分配:电力从地方引入两路10kv电源通过车站综合所、电力箱变供沿线车站各类设备、以及通信信号设备用电,包括现在使用的道岔融雪装置设备。
高铁用的电是什么电
高铁用电是从大电网里来的,不管是高铁供电,还是普通居民供电,电都是由公共电网提供。高铁是供电公司一类特殊的客户;普通居民供电由供电公司进行输电与配电。动车组每辆车上也自带蓄电池,是紧急备用电源。
有关资料表明,时速350千米的高铁每小时耗电9600度、时速250千米的高铁每小时耗电4800度。一趟时速250千米的高铁从北京到南京要花费4小时、耗费近2万度电!可以供某“一晚低至一度电”的空调开上55年!高铁不仅速度比普通列车要快,每排座位前方都有一个充电插座。

(3)高铁要电吗扩展阅读:
高速铁路技术简称高铁技术,是指与高速铁路系统有关的所有科学技术,其中包括铁路建设技术、火车制造技术、材料装配技术、信息采集技术、调度控制技术、维修养护技术、常规运输能力和经营管理水平等。
高铁技术如同航空技术一样,是十分庞大复杂的工程体系,不可就单速度方面一概而论。中国拥有独立的高铁技术,主要体现在IGBT技术自主化、高速列车芯片国产化、高速铁路由国家土建央企施工以及高速列车中国标准化等。
参考资料:网络-高速铁路
中国高铁到底有多耗电,万一停电怎么办
高铁对电的需求是非常大的,它需要有足够多的电量供应,大概350千米每小时走航行的高铁,他们一小时要消耗将近1万度的电,也就是从居民用电的经济价值角度来讲,它航行一小时需要5000块钱,到6000块钱的经济支出。
高速铁路并不是一个类似于磁悬浮列车一样的高效能交通工具,它是以庞大的电力驱动才产生这么高的速度的,虽然说摩擦力也小了很多,但是对比磁悬浮列车还是差了很多,因为此时悬浮列车的造价太高了,大概比普通的高铁高出2~3倍,虽然它的速度上限很高,但是我们最终还是选择了高速铁路。
高铁是用电吗和地铁一样
不一样,高铁是铁路部门提高运输速度的列车,更安全的服务当然价格要贵比普通列车,目前基本上服务全国;而地铁一般是在一个城市之间,方便人们日常生活出行,速度要慢些,价格也很实惠
中国高铁到底有多耗电
高铁在行驶的过程中大概需要27千伏左右的电压,这么算下来一小时电费就要1万左右了。
高铁在运行过程中,耗电量是相当大的。高铁上所需的电压跟日常生活中所需的电压不同,生活中的电压一般是在220V,而高铁的电压超过了25千伏。通常情况下,高铁跑1小时就需要用掉约1万元的电费,1分钟所需的电量就足足够一个家庭几个月的用电量。

最后,高铁耗电量大,随之而来的是成本输出更高,加之高铁每一天都得进行的保养维修,算下来也是很大的一笔开销。
综上所诉,高铁的运输成本是比较高的,所以票价才会那么贵,不过,高铁的出现还是为人们的生活带来了极大的便利。不管怎么说,我国高铁票价在国际上已经属于偏低的范畴了。
综上所述,高铁的耗电量非常大,一分钟所费的电量已经够一个家庭几个月的电量了。
高铁是用电的还是用油的
高铁是用电力驱动的,与传统内燃机驱动方式相比,电力驱动具有无污染、载客量大、动力/重量比大等优点。因此,世界上大多数高速列车都采用电力驱动方式,即通过铁路沿线的架空高压线电网(我国都采用工频单相2.5千伏电压)对列车供电方式。而安装在列车车顶沿着高压线滑动获取电能的装置叫受电弓。
拓展资料

高铁列车的动力来源是交流电还是直流电?
各国高铁基本采用交流电作为高铁列车的牵引网络的电流制式。但是,萌萌的意呆立除外。在高铁电流制式这个问题上,全世界都摸着意呆立过河。
二、 高速列车如何获取电能作为动力?
从电路角度来看,高铁采取AT(自耦变压器)供电方式。
高铁能够跑起来,依靠的是牵引供电系统给高速列车提供电力。
牵引供电为电力系统的一级负荷,但德国是例外,德国高铁电网有独立于德国国家电网。
因此,高铁牵引供电系统包括架空接触网、牵引变电所、回流回路。
电力系统与牵引供电系统
一句话简述就是:
牵引变电所给架空接触线提供电能,高速列车将架空接触线的电能取回车内,驱动变频电机使列车运转。
下面分三点详细解释这三个分句。
2.1 牵引变电所
牵引变电所为架空接触网提供电能。
典型的架空接触网
架空接触网的末端是牵引变电站,平均数十千米/座。每个变电站伸出两个供电支,提供不同相的交流电,这就是“供电段”。
据此可认为,铁路供电是按照“供电段”来进行划分的。
供电段运行模式
列车经过两个变电站的“供电段”时,先后通过A1-B1-A2-B2四个供电支。为保证供电安全,各供电支之间并非直接连结,而是存在确保电气绝缘(隔离)的结构或设计,因此各供电支之间不会短路。
列车从一相运行到另一相这个过程,叫做列车的过分相。电分相是线路上极短的一个区域,列车运行过程中,过分相瞬时完成。
因此,牵引变电所给架空接触网供能的过程可以简述为:
牵引变电所给各供电支提供电能,列车接受供电支的电能以维持运动,不断完成过分相-受流的循环(供电段)的同时向前运行。
2.2 架空接触网及弓网系统
受电弓与架空接触网合称受电弓-接触网系统,简称弓网系统。上文多次提到的架空接触网,是弓网系统的一部分。
弓网系统是牵引供电系统中的固定/移动设备结合点。换个通俗的说法,列车运行过程中,牵引系统从变电站一直到接触网都是静止的,而从受电弓部分开始,整个高速列车,都是运动的。
可以看到弓网系统的大致结构。列车车顶伸上去的折叠装置,就是受电弓;与受电弓直接接触的那条线,就是接触线,接触线是架空接触网的一部分。高速列车通过受电弓将架空接触线上的电能取回车内。
2.3 列车驱动与变频电机
PWM变频电机通过弓网系统获取电能,以此驱动列车运转。
接触网上的高压交流电,通过变压器降压和四象限整流器转换成直流电,在经过逆变器降至六点转换成可调压调频的交流电,输入三相异步/同步牵引电动机,通过传动系统带动车轮运行。
三、高速列车与接触线(轨道上面的电线)的连接部分是金属吗?
曾经是。
3.1 弓网系统结构简介
简单介绍一下弓网系统的结构。
火车通过车体顶部升起的受电弓(结构类似于消防车的云梯)与“轨道上面的电线”,即接触网相连,那根电线通常叫做接触线。关于你问的接触部分是否为金属,即接触部分的材质问题,应该分开看:
1)“电线”,即接触线(contact wire),是金属材质的,目前最常见的是铜合金的,铝材质的已经很少见;
2)受电弓是列车从接触线获得电能的机构。受电弓本身是金属的,但受电弓(pantograph)与接触线直接接触的部分并不是金属,而是由受电弓顶部的受流滑板(collector strips)完成。
这个过程可以假想成一根裸导线与另一根裸导线接触,但是金属与金属之间的摩擦切削会极大地加剧磨损,加润滑剂也无法改善两种金属高速摩擦磨损的性能,因此,其中一根裸导线是一根长条形的碳板以改善两者之间的接触性能,这个碳板就是受电弓滑板。
3.2 弓网材质选择
其实我觉得题主你问到点子上了,但还差一点点就能成为极好的问题。我们衡量一个系统用的可靠性时,总希望找一个或者若干个标准,它们能将危险量化,在此基础上将危险分类。在弓网匹配中,这个标准是损耗。
受电弓滑板早期也有非碳材质的,在此不表,我只提一个决定性的需求,在了解这个需求之后,你就会明白滑板的材质问题的由来:
这个需求叫做弓网配合。
当然,弓网配合是个很大的课题,细化到答主的问题上,就是:“受电弓接触线和受电弓滑板的材质选择有什么考究”
这个其实就是我刚才提到的,损耗:
题主你设想一下,弓和网之间接触,有摩擦,那必然就会有磨损,也就有损耗。(小知识:在通过电流的时候,摩擦不仅是两个物体之间的相对运动,因为掺杂了电的作用。对于这种现象,有一个专门的词概括,叫载流摩擦。具体到本题中,可以解释为:载流摩擦比同条件下的机械摩擦带来的损伤更大)
因为摩擦必然存在,所以损耗不可避免。
那么我们选择被消耗的部分,肯定是我们监测、维修过程中最容易完成的环节。
换言之,如果一个设备一定会发生故障,我们肯定希望故障发生在容易检修的部分。
任何设备都会老化、损伤。
因此,在设计包含摩擦副的设备时,我们会将容易检修的那一部分的强度降低;对于不容易检修的部分,则提高其强度。
这样,设备故障时,故障更可能发生在这些强度较低、同时也是容易检修的部分。这样一来,检修的成本与工作量大大降低。
这是一种将损害集中以方便处理的设计思路。
听上去很不爽是吧?反正我第一次明白的时候整个人都不好了...脑洞再开大点,我们辛苦设计设备,就是为了让它们坏得精彩么?
其实,从设备运转效率方面考虑,这种设计是很合理的,铁路的弓网系统就是一个很典型的例子。
比较一下列车接受电流的设备,也就是列车弓网的两部分,接触网接触线和受电弓滑板:
接触网的接触线:
1)接触网是一个复杂的机构,接触线不可能凭空出现在半空,而是在接触网下半部分,作为接触网的一小部分,而接触网本身是一个复杂的力学系统。
2)同时,一条接触线往往很长,检验上km长的接触线上具体哪一小段受损,是非常困难、而且吃力不讨好的事情。
3)如果接触线上只有很小的一段磨损极为严重,更换的时候,若将整线拆除,花费甚钜。
如果剪下某一段,那么如何将这段接触线接回去也是不小的问题。因为接触线是一个很敏感的系统,如果现场维修,简单的焊接会留下焊点,在一般的电路或许无关大局,但是,以300km/h时速运行的列车,接触线和弓网是高铁是它唯一的供电装置。受电弓和接触网之间的接触压力,在100N左右。相对速度80m/s的、精巧相互贴合的受电弓和接触网之间,一个几毫米的瘤子,必然会极大地影响列车供电甚至行车安全,这是不可能被容忍的。
受电弓滑板:
1)高铁受电弓长度一般不超过2000mm,受电弓滑板的导电部分在1000mm左右,出现任何故障,排查都十分简单、方便。
2)如果滑板损伤严重,直接更换即可。
3)受电弓滑板随车运动,而不像接触线随铁路翻山越岭,考虑到深山老林中接触网维修环境,也毋须赘述。
对于接触线和受电弓滑板和列车弓网系统,容易检修更换的,肯定是滑板。
工程中采用的设计思路是:保证滑板材料不如接触线材料耐磨,再具体一点,就是合金接触线+碳材料滑板的组合。
(滑板材质变迁我就不讲了,总之,就是这一攻一受的组合:铁打的接触线,流水的滑板)
最后提一下,接触线更换周期很长,年是基本单位,状况好的运维个十年二十年;
相对的,高铁受电弓滑板更换周期差不多是两周甚至更短,状态好的也有几个月的。
3.3 危害
如果是,高铁300km的时速,两个金属相摩擦,肯定会产生火花,这不是很危险吗?
你能看到的电火花,其实很可能发展成弓网电弧了。
按照空气放电的激烈程度排序,电晕-火花-电弧。
因此,在列车的弓与网接触中断(即弓网离线)条件下,应该是电火花->电弧这样的发展顺序。此外,车速越大,越容易发生弓网离线,弓网离线次数(弓网离线率)与离线程度(弓网大/中/小离线)加剧,弓网电弧现象会愈发明显
评论列表: